Literature Database Entry


Sigrid Dimce, Anatolij Zubow, Alireza Bayesteh, Giuseppe Caire and Falko Dressler, "Practical Channel Splicing using OFDM Waveforms for Joint Communication and Sensing in the IoT," arXiv, cs.NI, 2305.05508, May 2023.


Channel splicing is a rather new and very promising concept. It allows to realize a wideband channel sounder by combining multiple narrow-band measurements. Among others, channel splicing is a sparse sensing techniques suggested for use in joint communication and sensing (JCAS), channel measurements and prediction using cheap hardware that cannot measure wideband channels directly such as in the internet of things (IoT). This work validates the practicality of a channel splicing technique by integrating it into an OFDM-based IEEE 802.11ac system, which we consider representative for many IoT solutions. Our system allows computing both the channel impulse response (CIR) and the channel frequency response (CFR). In this paper, we concentrate on the impact of the number of sub-bands in our study and show that even using only 50% of the overall spectrum leads to very accurate CIR measures. We validate the system in simulation and confirm the results in an experimental in-door scenario using software defined radios.

Quick access

Original Version DOI (at publishers web site)
Authors' Version PDF (PDF on this web site)
BibTeX BibTeX


Sigrid Dimce
Anatolij Zubow
Alireza Bayesteh
Giuseppe Caire
Falko Dressler

BibTeX reference

    author = {Dimce, Sigrid and Zubow, Anatolij and Bayesteh, Alireza and Caire, Giuseppe and Dressler, Falko},
    doi = {10.48550/arXiv.2305.05508},
    title = {{Practical Channel Splicing using OFDM Waveforms for Joint Communication and Sensing in the IoT}},
    institution = {arXiv},
    month = {5},
    number = {2305.05508},
    type = {cs.NI},
    year = {2023},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.