Literature Database Entry

koehler2020mgeodar


Anselm Köhler, Lai Bun Lok, Simon Felbermayr, Nial Peters, Paul V. Brennan and Jan-Thomas Fischer, "mGEODAR - A Mobile Radar System for Detection and Monitoring of Gravitational Mass-Movements," Sensors, vol. 20 (21), pp. 6373, November 2020.


Abstract

Radar measurements of gravitational mass-movements like snow avalanches have become increasingly important for scientific flow observations, real-time detection and monitoring. Independence of visibility is a main advantage for rapid and reliable detection of those events, and achievable high-resolution imaging proves invaluable for scientific measurements of the complete flow evolution. Existing radar systems are made for either detection with low-resolution or they are large devices and permanently installed at test-sites. We present mGEODAR, a mobile FMCW (frequency modulated continuous wave) radar system for high-resolution measurements and low-resolution gravitational mass-movement detection and monitoring purposes due to a versatile frequency generation scheme. We optimize the performance of different frequency settings with loop cable measurements and show the freespace range sensitivity with data of a car as moving point source. About 15 dB signal-to-noise ratio is achieved for the cable test and about 5 dB or 10 dB for the car in detection and research mode, respectively. By combining continuous recording in the low resolution detection mode with real-time triggering of the high resolution research mode, we expect that mGEODAR enables autonomous measurement campaigns for infrastructure safety and mass-movement research purposes in rapid response to changing weather and snow conditions.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX

Contact

Anselm Köhler
Lai Bun Lok
Simon Felbermayr
Nial Peters
Paul V. Brennan
Jan-Thomas Fischer

BibTeX reference

@article{koehler2020mgeodar,
    author = {K{\"{o}}hler, Anselm and Lok, Lai Bun and Felbermayr, Simon and Peters, Nial and Brennan, Paul V. and Fischer, Jan-Thomas},
    doi = {10.3390/s20216373},
    title = {{mGEODAR - A Mobile Radar System for Detection and Monitoring of Gravitational Mass-Movements}},
    pages = {6373},
    journal = {Sensors},
    issn = {1424-8220},
    publisher = {Multidisciplinary Digital Publishing Institute (MDPI)},
    month = {11},
    number = {21},
    volume = {20},
    year = {2020},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.