Literature Database Entry
selvaraj2024personalized-preprint
Dinesh Cyril Selvaraj, Falko Dressler and Carla Fabiana Chiasserini, "Personalized and Context-aware Route Planning for Edge-assisted Vehicles," arXiv, cs.AI, 2407.17980, July 2024.
Abstract
Conventional route planning services typically offer the same routes to all drivers, focusing primarily on a few standardized factors such as travel distance or time, overlooking individual driver preferences. With the inception of autonomous vehicles expected in the coming years, where vehicles will rely on routes decided by such planners, there arises a need to incorporate the specific preferences of each driver, ensuring personalized navigation experiences. In this work, we propose a novel approach based on graph neural networks (GNNs) and deep reinforcement learning (DRL), aimed at customizing routes to suit individual preferences. By analyzing the historical trajectories of individual drivers, we classify their driving behavior and associate it with relevant road attributes as indicators of driver preferences. The GNN is capable of representing the road network as graph-structured data effectively, while DRL is capable of making decisions utilizing reward mechanisms to optimize route selection with factors such as travel costs, congestion level, and driver satisfaction. We evaluate our proposed GNN-based DRL framework using a real-world road network and demonstrate its ability to accommodate driver preferences, offering a range of route options tailored to individual drivers. The results indicate that our framework can select routes that accommodate driver's preferences with up to a 17% improvement compared to a generic route planner, and reduce the travel time by 33% (afternoon) and 46% (evening) relatively to the shortest distance-based approach.
Quick access
Original Version (at publishers web site)
BibTeX
Contact
Dinesh Cyril Selvaraj
Falko Dressler
Carla Fabiana Chiasserini
BibTeX reference
@techreport{selvaraj2024personalized-preprint,
author = {Selvaraj, Dinesh Cyril and Dressler, Falko and Chiasserini, Carla Fabiana},
doi = {10.48550/arXiv.2407.17980},
title = {{Personalized and Context-aware Route Planning for Edge-assisted Vehicles}},
institution = {arXiv},
month = {7},
number = {2407.17980},
type = {cs.AI},
year = {2024},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
This page was automatically generated using BibDB and bib2web.