Literature Database Entry


Rakesh Shrestha and Seung Yeob Nam, "Trustworthy Event-Information Dissemination in Vehicular Ad Hoc Networks," Hindawi Mobile Information Systems, November 2017.


In vehicular networks, trustworthiness of exchanged messages is very important since a fake message might incur catastrophic accidents on the road. In this paper, we propose a new scheme to disseminate trustworthy event information while mitigating message modification attack and fake message generation attack. Our scheme attempts to suppress those attacks by exchanging the trust level information of adjacent vehicles and using a two-step procedure. In the first step, each vehicle attempts to determine the trust level, which is referred to as truth-telling probability, of adjacent vehicles. The truth-telling probability is estimated based on the average of opinions of adjacent vehicles, and we apply a new clustering technique to mitigate the effect of malicious vehicles on this estimation by removing their opinions as outliers. Once the truth-telling probability is determined, the trustworthiness of a given message is determined in the second step by applying a modified threshold random walk (TRW) to the opinions of the majority group obtained in the first step. We compare our scheme with other schemes using simulation for several scenarios. The simulation results show that our proposed scheme has a low false decision probability and can efficiently disseminate trustworthy event information to neighboring vehicles in VANET.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX


Rakesh Shrestha
Seung Yeob Nam

BibTeX reference

    author = {Shrestha, Rakesh and Nam, Seung Yeob},
    doi = {10.1155/2017/9050787},
    journal = {Hindawi Mobile Information Systems},
    month = {11},
    publisher = {Hindawi},
    title = {{Trustworthy Event-Information Dissemination in Vehicular Ad Hoc Networks}},
    year = {2017},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.