Literature Database Entry
topsakal2025machine
Mustafa Topsakal, Selçuk Cevher and Doğanalp Ergenç, "A Machine Learning-based Intrusion Detection Framework with Labeled Dataset Generation for IEEE 802.1 Time-sensitive Networking," Journal of Systems Architecture, vol. 164, pp. 103408, July 2025.
Abstract
IEEE 802.1 Time-Sensitive Networking (TSN) technology has been increasingly embraced in mission-critical systems to establish deterministic communication with bounded latency. Since safety and security are of prime importance in such systems, the protection of TSN protocols has also been elevated to one of the highest priorities. In this work, we present a machine learning (ML)-based intrusion detection framework against low-rate denial of service (LDoS) attacks on TSN-based platforms. In LDoS attacks, the message period of victim streams are subtly manipulated, that makes their detection more challenging. Addressing this challenge, we evaluate and compare several ML algorithms within our framework in terms of their attack detection performance and computational cost. We also explore two different mitigation strategies to alleviate the effects of data imbalance, which is imposed by the nature of LDoS. To the best of our knowledge, our work is the first in the literature by presenting an ML-based intrusion detection framework and a TSN dataset that contains simulated LDoS attacks targeting a TSN-based in-vehicle network.
Quick access
Original Version (at publishers web site)
BibTeX
Contact
Mustafa Topsakal
Selçuk Cevher
Doğanalp Ergenç
BibTeX reference
@article{topsakal2025machine,
author = {Topsakal, Mustafa and Cevher, Sel{\c{c}}uk and Ergen{\c{c}}, Doğanalp},
doi = {10.1016/j.sysarc.2025.103408},
title = {{A Machine Learning-based Intrusion Detection Framework with Labeled Dataset Generation for IEEE 802.1 Time-sensitive Networking}},
pages = {103408},
journal = {Journal of Systems Architecture},
publisher = {Elsevier},
month = {7},
volume = {164},
year = {2025},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
This page was automatically generated using BibDB and bib2web.