Literature Database Entry

zubow2024ns3-preprint


Anatolij Zubow, Yannik Pilz, Sascha Rösler and Falko Dressler, "Ns3 meets Sionna: Using Realistic Channels in Network Simulation," arXiv, cs.NI, 2412.20524, December 2024.


Abstract

Network simulators are indispensable tools for the advancement of wireless network technologies, offering a cost-effective and controlled environment to simulate real-world network behavior. However, traditional simulators, such as the widely used ns-3, exhibit limitations in accurately modeling indoor and outdoor scenarios due to their reliance on simplified statistical and stochastic channel propagation models, which often fail to accurately capture physical phenomena like multipath signal propagation and shadowing by obstacles in the line-of-sight path. We present Ns3Sionna, which integrates a ray tracing-based channel model, implemented using the Sionna RT framework, within the ns-3 network simulator. It allows to simulate environment-specific and physically accurate channel realizations for a given 3D scene and wireless device positions. Additionally, a mobility model based on ray tracing was developed to accurately represent device movements within the simulated 3D space. Ns3Sionna provides more realistic path and delay loss estimates for both indoor and outdoor environments than existing ns-3 propagation models, particularly in terms of spatial and temporal correlation. Moreover, fine-grained channel state information is provided, which could be used for the development of sensing applications. Due to the significant computational demands of ray tracing, Ns3Sionna takes advantage of the parallel execution capabilities of modern GPUs and multi-core CPUs by incorporating intelligent pre-caching mechanisms that leverage the channel's coherence time to optimize runtime performance. This enables the efficient simulation of scenarios with a small to medium number of mobile nodes.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX

Contact

Anatolij Zubow
Yannik Pilz
Sascha Rösler
Falko Dressler

BibTeX reference

@techreport{zubow2024ns3-preprint,
    author = {Zubow, Anatolij and Pilz, Yannik and R{\"{o}}sler, Sascha and Dressler, Falko},
    doi = {10.48550/arXiv.2412.20524},
    title = {{Ns3 meets Sionna: Using Realistic Channels in Network Simulation}},
    institution = {arXiv},
    month = {12},
    number = {2412.20524},
    type = {cs.NI},
    year = {2024},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.